12x^2+17x=15

Simple and best practice solution for 12x^2+17x=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x^2+17x=15 equation:


Simplifying
12x2 + 17x = 15

Reorder the terms:
17x + 12x2 = 15

Solving
17x + 12x2 = 15

Solving for variable 'x'.

Reorder the terms:
-15 + 17x + 12x2 = 15 + -15

Combine like terms: 15 + -15 = 0
-15 + 17x + 12x2 = 0

Begin completing the square.  Divide all terms by
12 the coefficient of the squared term: 

Divide each side by '12'.
-1.25 + 1.416666667x + x2 = 0

Move the constant term to the right:

Add '1.25' to each side of the equation.
-1.25 + 1.416666667x + 1.25 + x2 = 0 + 1.25

Reorder the terms:
-1.25 + 1.25 + 1.416666667x + x2 = 0 + 1.25

Combine like terms: -1.25 + 1.25 = 0.00
0.00 + 1.416666667x + x2 = 0 + 1.25
1.416666667x + x2 = 0 + 1.25

Combine like terms: 0 + 1.25 = 1.25
1.416666667x + x2 = 1.25

The x term is 1.416666667x.  Take half its coefficient (0.7083333335).
Square it (0.5017361113) and add it to both sides.

Add '0.5017361113' to each side of the equation.
1.416666667x + 0.5017361113 + x2 = 1.25 + 0.5017361113

Reorder the terms:
0.5017361113 + 1.416666667x + x2 = 1.25 + 0.5017361113

Combine like terms: 1.25 + 0.5017361113 = 1.7517361113
0.5017361113 + 1.416666667x + x2 = 1.7517361113

Factor a perfect square on the left side:
(x + 0.7083333335)(x + 0.7083333335) = 1.7517361113

Calculate the square root of the right side: 1.323531681

Break this problem into two subproblems by setting 
(x + 0.7083333335) equal to 1.323531681 and -1.323531681.

Subproblem 1

x + 0.7083333335 = 1.323531681 Simplifying x + 0.7083333335 = 1.323531681 Reorder the terms: 0.7083333335 + x = 1.323531681 Solving 0.7083333335 + x = 1.323531681 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.7083333335' to each side of the equation. 0.7083333335 + -0.7083333335 + x = 1.323531681 + -0.7083333335 Combine like terms: 0.7083333335 + -0.7083333335 = 0.0000000000 0.0000000000 + x = 1.323531681 + -0.7083333335 x = 1.323531681 + -0.7083333335 Combine like terms: 1.323531681 + -0.7083333335 = 0.6151983475 x = 0.6151983475 Simplifying x = 0.6151983475

Subproblem 2

x + 0.7083333335 = -1.323531681 Simplifying x + 0.7083333335 = -1.323531681 Reorder the terms: 0.7083333335 + x = -1.323531681 Solving 0.7083333335 + x = -1.323531681 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.7083333335' to each side of the equation. 0.7083333335 + -0.7083333335 + x = -1.323531681 + -0.7083333335 Combine like terms: 0.7083333335 + -0.7083333335 = 0.0000000000 0.0000000000 + x = -1.323531681 + -0.7083333335 x = -1.323531681 + -0.7083333335 Combine like terms: -1.323531681 + -0.7083333335 = -2.0318650145 x = -2.0318650145 Simplifying x = -2.0318650145

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.6151983475, -2.0318650145}

See similar equations:

| (13x/42)-(x/6)=1 | | 11/13ln | | 6+x+5=41 | | 3(5x-6)-2(x-9)=12(x-1)-100 | | 15+8y=15 | | (9p^2-6p^3+3-11p)+(7p^3-3p^2+4)= | | 6b-4b+2= | | 12x^ay^b/(-6x^ay) | | ln11/13 | | 6x+2-5=o | | 1.3=-logx | | 3x^3-18x+14= | | 7(n-5)=9(p+10) | | 8x-9+5x=5(5x-3)+2 | | 2(x-5)+6=-12 | | 4c+2d=45 | | 42=9(b-1) | | 5x-5=2y+22 | | (X+21)=102 | | 13x+12=3x+272 | | x-6=4x+78 | | -5=-3+-2j | | x+x^4=360 | | 5x-33=x+3 | | Q/2-9=7 | | Y/5(10-x)= | | Log3[9x^4/√y] | | 12z^3+5z^2-3x=0 | | 1/4x^2-1/36x-2/9=0 | | 9/2x=-5/9 | | y=in(intagx) | | 15x-4=x^2 |

Equations solver categories